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Abstract
An n-body potential is developed and satisfactorily applied to hcp metals, Co, Hf, Mg, Re, Ti,
and Zr, in the form of long-range empirical potential. The potential can well reproduce the
lattice constants, c/a ratios, cohesive energies, and the bulk modulus for their stable structures
(hcp) and metastable structures (bcc or fcc). Meanwhile, the potential can correctly predict the
order of structural stability and distinguish the energy differences between their stable hcp
structure and other structures. The energies and forces derived by the potential can smoothly go
to zero at cutoff radius, thus completely avoiding the unphysical behaviors in the simulations.
The developed potential is applied to study the vacancy, surface fault, stacking fault and
self-interstitial atom in the hcp metals. The calculated formation energies of vacancy and
divacancy and activation energies of self-diffusion by vacancies are in good agreement with the
values in experiments and in other works. The calculated surface energies and stacking fault
energies are also consistent with the experimental data and those obtained in other theoretical
works. The calculated formation energies generally agree with the results in other works,
although the stable configurations of self-interstitial atoms predicted in this work somewhat
contrast with those predicted by other methods. The proposed potential is shown to be relevant
for describing the interaction of bcc, fcc and hcp metal systems, bringing great convenience for
researchers in constructing potentials for metal systems constituted by any combination of bcc,
fcc and hcp metals.

1. Introduction

In the past decades, a variety of empirical n-body potentials
have been developed by researchers. They have attained
considerable success in the study of bulk, surface, and cluster
properties of metals. Examples include the embedded atom
method (EAM) developed by Daw and Baskes [1, 2], the n-
body potential developed by Finnis and Sinclair (FS) [3] for
bcc transition metals, and the so-called TB-SMA potential
developed by Tomanek et al [4] for fcc metals. Later,
other researchers, such as Oh, Johnson, Doyama, and Zhang,
proposed several short-range potentials [5–8]. These potentials
commonly truncate the energies and forces with a short-range
cutoff radius of less than third-nearest neighbor. In calculations
of the energies and forces, the interaction of atoms is neglected

1 Author to whom any correspondence should be addressed.

if their distance is larger than the cutoff radius to save computer
time in large-scale simulations. Nevertheless, an unavoidable
structural stability problem is frequently encountered because
they always predict the same energy for the fcc and ideal
hcp structures [6]. This means that the potentials cannot
correctly predict the order of structural stability. Furthermore,
as most hcp metals have a particular non-ideal c/a ratio, the
application of these potentials in hcp metals may bring some
difficulties in predicting the right c/a ratios. In order to
overcome these problems, new models for hcp metals have
been developed. For example, Baskes et al [9] proposed
modified EAM (MEAM) models, considering the angular
contributions. Pasianot et al [10] added a new term M(P)

in the form of total energy for the EAM to express a many-
body shear term related to bond angles in an average sense.
Hu et al [11] developed an analytic modified embedded atom
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potential (AMEAM) model by a similar approach. Chen et al
[12] used two sets of parameters in their potential model of
pure hcp metals.

These models do resolve the structural stability problem
and improve some calculated properties of transition metals.
Nevertheless, they also bring some application problems at the
same time. For example, it is difficult to apply the models to
disordered systems, such as liquid and amorphous systems, for
it is difficult to define the c-axis and to calculate the angular
contributions in these systems. In some works, such as in the
study of the melting process, the study of crystal–amorphous
state transitions and empirical potentials which can be well
applied in both crystalline and disordered systems are needed.
It is thus necessary to construct n-body potentials for hcp
metals which can reflect their anisotropic properties and do
not have terms dependent on crystalline orientation. In order
to interpret the non-ideal c/a and differentiate the energy of
hcp and fcc structures, adopting a longer cutoff radius greater
than the third nearest-neighbor distance is an effective method
for a spherically symmetric n-body potential, as the atomic
configuration of the third neighbor atoms is different in fcc and
ideal hcp structures.

Recently, Dai et al [13–15] proposed the long-range
empirical potential (LREP) method with a cutoff distance
larger than the fourth neighbor distance. The potential
may thus distinguish the energy difference between stable
and hypothetical metal structures. The long-range empirical
potential (LREP) has been well applied to bcc and fcc
metal systems as well as binary and ternary fcc metal
systems [13–15]. It is of interest to find out whether it is
possible to develop potentials for hcp metals using the LREP
method. If this potential can describe the atomic interactions
of hcp metals it would be more convenient for constructing
empirical potentials for binary and ternary metal systems
which consist of cubic and hcp metals.

In the present study, we attempt to extend the LREP so that
it can be applied to hcp metals. The potential is constructed
to reproduce the lattice constants and the observed c/a ratio
for each hcp metal and to distinguish the energy difference
between its hcp structure and other structures, such as fcc, bcc,
and simple cubic (sc) structures. To evaluate the applicability
of the potential, other properties, such as the cohesive energies,
elastic constants, etc are also calculated and compared with
experimental observations and first-principles calculation. The
properties of the vacancies, divacancies, and self-interstitial
atoms are studied and discussed. In addition, stacking fault
energies, surface energies and some thermal properties have
also been calculated and their values are compared with typical
experimental data.

2. Construction of the potential

In this work, the n-body potential is constructed in the form
of a LREP. According to the LREP [13–15] method, the total
potential energy Ei of atom i can be calculated by

Ei = 1
2

∑
V (ri j) −

√∑
φ(ri j ), (1)

where V (ri j) is the pair term and φ(ri j ) is the many body part.
They can be expressed as

V (ri j ) = (rc1 − ri j )
m(c0 + c1ri j + c2r 2

i j + c3r 3
i j + c4r 4

i j ),

0 < ri j � rc1, (2)

and

φ(ri j) = α(rc2 − ri j)
n exp

[
−β

(
ri j

r0
− 1

)]
,

0 < ri j � rc2. (3)

Here, rc1 and rc2 are cutoff radii for the pair term and the many
body part, respectively. r0 is the atomic distance between the
nearest-neighbor atoms in the ground state. The exponents
m and n are two integers and are adjustable according to the
specific metals. α, β and ci are potential parameters that will
be fitted. In the fitting process, it is found that the fitted value
of parameter β is near zero. In order to simplify the form of the
potential and to save computer time, the parameter β is set to
be zero for the hcp metals in the present study. Thus the many
body part of the potential can be written as

φ(ri j ) = α1(rc2 − ri j )
n, 0 < ri j � rc2. (4)

As the cutoff distances are longer than the third and fourth
nearest-neighbor distance, it may cost more computer time in
MD simulations. However, it can be seen that the form of
the pair term and the many body part are polynomial in this
work. Consequently, the computation of the present developed
potential is more efficient than the original LREP with an
exponential term [13–15]. Generally, the potential parameters
for metal systems are determined by fitting their lattice
constants, cohesive energies, and elastic constants obtained
in experiments. In the fitting process, these properties are
calculated by the potential with a set of initial parameters first
and then these parameters are adjusted by computer programs
to make the calculation results closer to the experimental data
or the first-principles calculation results. When a metal is in an
equilibrium state, its first derivative of potential energy (dE)

should be equal to zero. Moreover, as the hcp structures do not
have cubic symmetry, it should be noticed that all the elements
σi j (i, j = 1, 2, 3) in the stress matrix σ of each unit cell
should be equal to zero in the equilibrium state. Here, dE = 0
and σi j = 0 are regarded as two fitting conditions in the present
study so as to confirm the equilibrium state of a structure. After
the fitting, another computation program based on the potential
is applied to search the lowest energy and in a large range of
lattice constants for each structure and the calculation results
are consistent with the results in the fitting process. Table 1
presents the fitted potential parameters for the six hcp metals,
i.e. Co, Hf, Mg, Re, Ti, and Zr.

In order to evaluate the relevance of the developed
potential, the lattice constants, cohesive energies, bulk moduli,
and elastic constants of the six hcp metals and those of their
hypothetical bcc and fcc structures are calculated and shown in
tables 2–4, with the experimental data and the results of first-
principles calculations. The first-principles calculations are
carried out within the context of the density functional theory
using the PW91 [16, 17] generalized gradient approximation
as the exchange–correlation functional and the projected
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Table 1. Fitted potential parameters for Co, Hf, Mg, Re, Ti, and Zr.

Co Hf Mg Re Ti Zr

m 4 4 4 4 4 4
n 4 4 4 4 4 4
rc1 (Å) 5.00903834 6.24961864 6.54067823 5.42974107 5.81117655 6.43754936
rc2 (Å) 6.65369986 7.28803678 7.24230262 7.34562198 7.28149146 7.22278651
c0 (10−19 J) 3.35239020 2.50996629 0.52369341 6.46677772 2.42569226 1.26299765

c1 (10−19 J/Å
m+1

) −4.50152401 −2.75569128 −0.55925561 −7.89864454 −2.87502933 −1.35558156

c2 (10−19 J/Å
m+2

) 2.25585528 1.13133595 0.22344189 3.59139963 1.27417577 0.54715759

c3 (10−19 J/Å
m+3

) −0.49773155 −0.20479284 −0.03953801 −0.71825707 −0.24912625 −0.09788934

c4 (10−19 J/Å
m+4

) 0.04069319 0.01374018 0.00260588 0.05330095 0.01807024 0.00653836
α1 (10−19 J/Å

n
) 0.01828688 0.04833535 0.00140330 0.04538689 0.01904463 0.05782882

Table 2. The lattice constants (a), cohesive energies (Ec), bulk
modulus (B0), and elastic constants (Cij ) of Co, Hf, Mg, Re, Ti, and
Zr obtained from LREP (first rows) and experiments [22–24] (second
rows).

Co Hf Mg Re Ti Zr

a (Å) 2.51 3.19 3.21 2.76 2.95 3.23
2.51 3.19 3.21 2.76 2.95 3.23

c (Å) 4.07 5.05 5.21 4.46 4.68 5.15
4.07 5.05 5.21 4.46 4.68 5.15

Ec (eV) 4.39 6.44 1.51 8.03 4.85 6.25
4.39 6.44 1.51 8.03 4.85 6.25

C11 (MBar) 2.813 1.387 0.484 5.747 1.312 1.214
3.071 1.881 0.595 6.182 1.624 1.434

C12 (MBar) 1.149 0.650 0.191 2.223 0.593 0.595
1.650 0.772 0.261 2.753 0.920 0.728

C13 (MBar) 1.288 1.017 0.250 2.428 0.940 0.784
1.027 0.660 0.218 2.078 0.690 0.653

C33 (MBar) 4.100 2.757 0.955 7.606 2.700 2.193
3.581 1.969 0.616 6.835 1.807 1.648

C44 (MBar) 0.970 0.734 0.205 1.965 0.705 0.499
0.755 0.557 0.164 1.606 0.467 0.320

B0 (MBar) 1.909 1.211 0.367 3.695 1.141 0.994
1.903 1.102 0.356 3.669 1.073 0.954

augmented wave (PAW) [18, 19] method, as implemented in
the Vienna ab initio simulation package (VASP) [20]. The
integration in the Brillouin zone is done in a mesh of 11 ×
11×11 special k-points (56 irreducible k-points for bcc and fcc
lattice and 96 irreducible k-points for hex lattice) determined
according to the Monkhorst–Pack scheme [21], as such an
integration has proved to be sufficient for the computation
of these simple structures in this work. The first-principles
simulations were spin-polarized for all the six metals, Co,
Hf, Mg, Re, Ti, and Zr, although some of them are non-
ferromagnetic metals. It can be seen that the calculated
lattice constants, cohesive energies, and bulk moduli of the
six metals match well with their experimental values and first-
principles calculation results in their stable hcp structure and
in hypothetical bcc or fcc structure. The elastic constants
derived by empirical potential are generally consistent with
those obtained in experiments and first-principles calculations,
while their agreements are not as good as those of the other
properties, such as the lattice constants and the cohesive
energies. Considering the limitation of the spherical symmetric

Table 3. The lattice constants (a), cohesive energies (Ec), bulk
modulus (B0), and elastic constants (Cij ) of Co, Hf, Mg, Re, Ti, and
Zr in their hypothetical bcc structure obtained from LREP (first
rows) and first-principles calculations (second rows).

Co Hf Mg Re Ti Zr

a (Å) 2.836 3.581 3.639 3.111 3.311 3.615
2.809 3.540 3.580 3.117 3.248 3.570

Ec (eV) 4.285 6.307 1.480 7.734 4.756 6.188
4.284 6.266 1.478 7.715 4.744 6.179

C11 (MBar) 1.364 0.848 0.369 2.377 0.914 1.062
1.538 0.663 0.216 3.639 0.841 1.326

C12 (MBar) 1.886 1.064 0.375 3.572 1.056 1.011
2.186 1.201 0.382 3.557 1.228 0.799

C44 (MBar) 1.579 0.792 0.332 3.124 0.829 0.731
1.259 0.513 0.322 1.800 0.330 0.635

B0 (MBar) 1.712 0.992 0.373 3.174 1.009 1.028
1.970 1.021 0.327 3.585 1.099 0.974

Table 4. The lattice constants (a), cohesive energies (Ec), bulk
modulus (B0), and elastic constants (Cij ) of Co, Hf, Mg, Re, Ti, and
Zr in their hypothetic fcc structure obtained from LREP (first rows)
and first-principles calculations (second rows).

Co Hf Mg Re Ti Zr

a (Å) 3.542 4.471 4.521 3.895 4.136 4.537
3.520 4.475 4.524 3.918 4.100 4.527

Ec (eV) 4.376 6.406 1.496 8.003 4.820 6.220
4.370 6.372 1.494 7.965 4.794 6.213

C11 (MBar) 2.544 1.394 0.434 5.141 1.278 1.029
2.919 1.487 0.321 5.540 1.421 0.895

C12 (MBar) 1.269 0.708 0.230 2.486 0.657 0.670
1.709 0.811 0.320 2.744 0.941 0.902

C44 (MBar) 0.951 0.428 0.185 2.024 0.424 0.386
1.480 0.629 0.188 2.066 0.558 0.277

B0 (MBar) 1.694 0.937 0.298 3.371 0.864 0.790
2.113 1.036 0.320 3.676 1.101 0.900

potential and the errors of the first-principles calculations or the
experiments, these discrepancies can be accepted. It can also
be seen that they exactly reproduce the experimental c/a ratio
for each metal. This implies that the constructed potential may
be correct for the anisotropic properties of hcp metals although
they are spherical symmetric.
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Table 5. The structural energy differences �E(eV/atom) obtained by the LREP, first-principles calculations, experimental observations [9],
MEAM potential [9], and AMEAM potential [11].

Methods Co Hf Mg Re Ti Zr

�Ehcp→ideal hcp LREP 0.0007 0.0058 0.0003 0.0024 0.0036 0.0034
MEAM 0.0000 0.0059 0.0000 0.0005 0.0071 0.0105
AMEAM 0.0000 0.0068 0.0001 0.0018 0.0041 0.0029

�Ehcp→fcc LREP 0.0148 0.0353 0.0139 0.0277 0.0299 0.0302
Ab initio 0.0196 0.0681 0.0161 0.0652 0.0565 0.0367
Expt. 0.100 0.026 0.110 0.060 0.076
MEAM 0.005 0.053 0.004 0.031 0.033 0.017
AMEAM 0.0062 0.0068 0.0022 0.0050 0.0094 0.0049

�Ehcp→bcc LREP 0.1057 0.1337 0.0298 0.2968 0.0941 0.0631
Ab initio 0.1064 0.1742 0.0324 0.3145 0.1057 0.0707
Expt. 0.059 0.031 0.292 0.070 0.076
MEAM 0.241 0.064 0.029 0.303 0.075 0.061
AMEAM 0.0164 0.0301 0.0176 0.1636 0.0143 0.0179

�Ehcp→diamond LREP 1.0742 1.6701 0.6381 1.8894 1.2699 1.6169
MEAM 1.20 2.19 0.31 2.39 1.57 1.48

�Ehcp→sc LREP 0.2652 0.1654 0.1471 0.5967 0.1631 0.3835
MEAM 0.5900 0.5100 0.1300 0.9400 0.4100 0.4500

It is very important to ensure that no unphysical structural
instabilities would occur for a potential in the calculations.
Based on the newly developed LREP potential, we calculate
the energies of metastable structures, i.e. ideal hcp, fcc,
bcc, diamond, and sc structures, of the six hcp metals.
Table 5 shows the calculated energy differences between
the metastable structures (ideal hcp, fcc, bcc, diamond
structures, sc) and the hcp one, i.e. �Ehcp→ideal hcp, �Ehcp→bcc,
�Ehcp→fcc, �Ehcp→diamond, and �Ehcp→sc. For comparison,
the results obtained from experimental observations and first-
principles calculations are also listed in table 5.

One sees that the values of energy differences predicted
by the present model quantitatively match with those obtained
from experiments or first-principles calculations. Both the
calculated results and experimental ones indicate that hcp
structure has the lowest potential energy among hcp, ideal hcp,
fcc, bcc, sc, and diamond structures, reflecting the fact that the
equilibrium states of the six metals are all hcp structures. In
table 5, inspecting the values of �Ehcp→ideal hcp predicted by
LREP and other works, the results of the constructed potential
are in general agreement with other works, especially for
AMEAM [11]. Meanwhile, the �Ehcp→ideal hcp predicted by
LREP for metals with a near-ideal c/a ratio (

√
8/3 ≈ 1.633),

Co and Mg, are larger than those in other works. These energy
differences are in a reasonable range, as the absolute values
of all these results are much lower than those of other metals.
Inspecting the values of �Ehcp→fcc and �Ehcp→bcc, one sees
that the results of the constructed potential and MEAM [9]
are quantitatively consistent with each other, while the results
of AMEAM [11] have been systematically underestimated
compared to the experimental results, as the maximum relative
error is beyond 90%. Apparently, the constructed potential is
more relevant than AMEAM [11] in predicting the structural
stability of hcp transition metals. Inspecting the values of
�Ehcp→diamond and �Ehcp→sc, one sees that the results of
the constructed potential and MEAM [9] are qualitatively
consistent with each other. The agreement of �Ehcp→diamond

in this work and MEAM [9] is rather good and is better than
that of �Ehcp→sc except for Mg. The calculation results in this
work and MEAM [9] are in overall agreement. These results
imply that the developed potential can reasonably predict
the structural stability and distinguish the energy difference
between the hcp structures and other structures.

In order to check the relevance of an empirical potential,
the equation of state is often derived from the potential and then
compared with that obtained in other ways. The frequently
used equations of state in this field are the Rose equation [25]
and its variant [26], which have been considered to be universal
for all categories of metals. The equations of state, i.e. the total
energy as a function of the lattice constant, are calculated in
the present study. The predictions of the constructed potential
are compared in figure 1 with the results obtained from the
Rose equation for the six metals. One sees that there is
no discontinuity of the curves in the whole calculated range.
In particular, at the cutoff radius, the potential energy and
its derivative continuously go to zero as expected for each
metal. It can also be seen that the total energy derived from
the proposed potential is close to the Rose equation in the
vicinity of the equilibrium point, indicating that the interatomic
potential developed in the present study can be applied to
describe the interatomic interaction of a system if it is not far
from the equilibrium state.

In the following sections, the developed potential is
applied to study some basic scientific issues, such as the
vacancies, divacancies, self-interstitial atoms, stacking faults,
and surfaces. These issues themselves are of significance and
hence worth further studies in order to reveal their underlying
physics as well as their respective atomic mechanisms.
Meanwhile, if the calculation results are in agreement with the
experimental observations and other theoretical predictions,
they could serve as further evidence confirming the relevance
of the developed potentials.
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Figure 1. Total energies E as a function of lattice constant calculated from the LREP and Rose equation.

Figure 2. The schematic representations of the vacancy and divacancy configurations in the hcp structure. The open circles stand for
vacancies.

3. Vacancies and divacancies

Based on the developed potential, the vacancy formation
energies (E1v), the vacancy migration energies (E1m),
the activation energies for self-diffusion by the vacancy
mechanism (Q1v), and the divacancy formation energies (E2v)

are calculated by molecular dynamics (MD) simulations and
presented in table 6. Schematic representations of the vacancy
and divacancy configurations in hcp structure are presented
in figure 2. The MD simulations are carried out with the
Parrinello–Rahman constant pressure scheme [27] at 3 K and
0 Pa. The equations of motion are solved using the second-
order four-value predictor corrector algorithm of Gear with a
time step of 5×10−15 s [28]. In the models, the [21̄1̄0], [01̄10],
and [0001] crystalline directions are parallel to the x , y, and z

axes, respectively. Periodic boundary conditions are adopted
in the three axes. In the calculations, the models consist of
10 × 12 × 6 = 720 unit cells (1440 atoms for perfect crystal,
1439 atoms for monovacancy and 1438 atoms for divacancy).
In the calculation of the migration energy for a vacancy, one
atom is pushed towards the nearest vacant site by changing its
velocity artificially. The movement of the atom is monitored
by its position and energy. The vacancy migration energy is
the energy corresponding to the lowest velocity for the atom
moving from its crystal site to the vacant site. For hcp metals,
there are two favorable paths for the migration of a vacancy,
corresponding to the migration of an atom out of the basal
plane and in the basal plane, the migration energy of which
are denoted as Eout

1m and E in
1m respectively. The self-diffusion

activation energy by the vacancy mechanism is sum of the

5
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Table 6. Vacancy migration energy and self-diffusion activation energy by the vacancy mechanism (eV) obtained by the LREP, experimental
observations, and other works.

Metals Value Calculated Expt. Data in other works

Co E1v 1.40 1.35 [9] 1.48 [9], 1.38 [11], 1.41 [29]

Eout
1m 0.93 0.72 [11], 0.89 [29]

Qout
1v 2.33 2.10 [11], 2.301 [29]

E in
1m 0.87 0.72 [11], 0.89 [29]

Qin
1v 2.27 2.10 [11], 2.30 [29]

Hf E1v 1.98 1.80 [9] 2.02 [9], 1.80 [11]

Eout
1m 0.63 0.90 [11]

Qout
1v 2.61 2.70 [11]

E in
1m 0.75 0.98 [11]

Qin
1v 2.73 2.78 [11]

Mg E1v 0.79 0.58 [9], 0.87 [30] 0.66 [9], 0.59 [11], 0.87 [31]

Eout
1m 0.43 0.39 [31] 0.35 [11], 0.66 [30]

Qout
1v 1.22 1.388 [32] 0.94 [11], 1.26 [31], 1.43 [33, 38]

E in
1m 0.40 0.35 [11], 0.59 [30], 0.40 [31]

Qin
1v 1.19 0.94 [11], 1.38 [30], 1.27 [31], 1.44 [33]

Re E1v 2.30 2.30 [9] 2.49 [9], 2.35 [11]

Eout
1m 2.54 2.25 [11]

Qout
1v 4.84 4.60 [11]

E in
1m 2.39 2.29 [11]

Qin
1v 4.69 4.64 [11]

Ti E1v 1.59 1.50 [9] 1.80 [9], 1.49 [11, 34, 36], 1.43 [35]

Eout
1m 0.52 0.56 [11], 0.82 [34], 1.28 [36], 0.68 [37]

Qout
1v 2.11 1.272 [47] 2.05 [11], 2.31 [34], 2.77 [36], 3.014 [38]

E in
1m 0.58 0.61 [11], 0.67 [34], 1.28 [36], 0.80 [37]

Qin
1v 2.17 2.10 [11], 2.16 [34], 2.77 [36]

Zr E1v 1.75 1.70 [9] 1.93 [9], 1.70 [11], 1.55 [39],1.86 [40]

Eout
1m 0.92 0.67 [11], 0.785 [40], 1.07 [39]

Qout
1v 2.67 2.37 [11], 2.645 [40], 2.62 [39]

E in
1m 0.89 0.72 [11], 0.775 [40], 1.18 [39]

Qin
1v 2.64 2.42 [11], 2.635 [40], 2.73 [39], 3.296 [38]

vacancy formation energy and the vacancy migration energy,
which can be calculated by

Qout
1v = Eout

1m + E1v (5)

Qin
1v = E in

1m + E1v. (6)

The calculated results and experimental data are listed in
table 6. The present calculation results of the formation
energies and diffusion activation energies of vacancies are
agree well with the experimental data. These results are also in
general agreement with other calculation results.

It is of interest to compare the out-of-basal plane and in-
basal plane self-diffusion energy, since the available data are
limited and contradictory [11]. The present study reveals that
Qout

1v is larger than Qin
1v for Co, Mg, Re, and Zr, so diffusion in

the basal plane is easier than in the non-basal plane for these
metals. Meanwhile, for Hf and Ti, Qout

1v is less than the Qin
1v, so

diffusion in the non-basal plane is easier than that in the basal

plane for these metals. Our calculations implied that the micro-
diffusion mechanism is strongly affected by the c/a ratio, as
the c/a ratios of Hf and Ti have the smallest values, which are
less than 1.59, while those of the others are all larger than 1.59.

The application of the developed potential to the
divacancy properties can further evaluate the reliability of the
potential. We therefore investigate the divacancy formation
and binding energies for two divacancy configurations, first-
nearest neighbors (in different basal planes) and second-nearest
neighbors (in the same basal plane), which are much more
stable than other configurations. The divacancy binding energy
is the difference between the energies of two well-separated
vacancies and two neighbor vacancies. The calculated results
are presented in table 7 along with the calculation results from
other works. It can also be seen that the formation energies
for different configurations are almost the same in each work,
although the divacancy formation energies obtained in different
works are somewhat different in magnitude. From table 7,
one can find that all the binding energies are positive in this

6
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Table 7. Divacancy formation and binding energies (eV) obtained
by the LREP and other works.

Divacancy in plane Divacancy out of plane

Metal E in
2v E in

2v Eout
2v Eb out

2v

Co 2.71 0.08 2.72 0.08
−0.47 [9] −0.46 [9]

0.440 [29] 0.40 [29]
2.57 [11] 0.19 [11] 2.56 [11] 0.2 [11]

Hf 3.76 0.20 3.78 0.18
−0.21 [9] −0.18 [9]

3.35 [11] 0.24 [11] 3.35 [11] 0.24 [11]

Mg 1.47 0.11 1.48 0.11
−0.22 [9] −0.22 [9]

0.133 [41] 0.131 [41]
1.09 [11] 0.09 [11] 1.1 [11] 0.08 [11]

Re 4.48 0.13 4.49 0.12
−0.63 [9] −0.61 [9]

4.4 [11] 0.32 [11] 4.38 [11] 0.32 [11]

Ti 3.03 0.16 3.04 0.14
−0.13 [9] −0.11 [9]

2.76 [34] 0.22 [34] 2.76 [34] 0.22 [34]
2.36 [42] 0.62 [36] 2.58 [42] 0.40 [36]
2.79 [11] 0.20 [11] 2.76 [11] 0.22 [11]

Zr 3.30 0.20 3.31 0.19
−0.53 [9] −0.52 [9]

0.248 [40] 0.236 [40]
0.10 [43] 0.08 [43]

3.18 [11] 0.22 [11] 3.18 [11] 0.21 [11]

work. This means that all these configurations are stable as
predicted by the constructed potential. In other works, the
binding energies are all positive except for the results obtained
by MEAM [9].

4. Self-interstitial atoms

In this work, MD simulations are applied to calculate
the properties of self-interstitial atoms for eight different
configurations suggested by Johnson et al [36]. According to
their suggestion, the O site has an octahedral coordination; the
T site has a tetrahedron coordination; the S site represents a
[0001] split dumbbell, i.e., two atoms sharing the same site in
the c direction; and the C site is midway between two nearest-
neighbor atoms out of the basal plane, and can be viewed as
a pseudo-crowdion. The other four configurations are in the
basal plane: the BO site is below an O site; the BT site is
below a T site, the BC site is midway between two nearest
neighbors in the basal plane; and the BS site involves two
atoms equidistant from a vacant lattice site. The schematic
representations of these configurations in the hcp structure
investigated in the present study are presented in figure 3.

In the MD simulations, unstable configurations are relaxed
and transform to a stable (or metastable) one. The relaxed
configuration for each initial site and the formation energy for
stable (or metastable) configurations are presented in table 8.
The non-basal dumbbell is denoted as DB in the table. It can
be seen that O and BS are stable for all the six hcp metals. In
the MD simulations, BC, BO, BS, and BT would transform to

Table 8. The final state and formation energies for self-interstitial
atoms (eV) at different positions derived from LREP.

Final state

Initial state Co Hf Mg Re Ti Zr

O O O O O O O
ESIA O 4.97 4.78 1.96 13.25 3.77 4.16
BC BS BS BS BS BS BS
BO BS BS BS BS BS O
BS BS BS BS BS BS BS
ESIA BS 4.34 3.93 1.77 12.03 3.12 3.21
BT BS BS BS BS BS BS
C DB O O DB O O
T BS BS BS BS O O
S DB O O DB O O
ESIA DB 4.32 11.88

BS for the six metals, except that BO would transform to O
for Zr. C and S transform to DB (Co and Re), and O (Hf, Mg,
Ti, and Zr). T would transform to BS (Co, Hf, Mg, and Re)
and O (Ti, and Zr). From the calculated formation energy of
the self-interstitial atom, it can be found that BS is the most
stable configuration for Hf, Mg, Ti, and Zr, while DB is the
most stable configuration for Co and Re. However, different
stable configurations of self-interstitial atoms are derived by
different potentials. For instance, Hu et al [11] reported that
the most stable self-interstitial atom is BS for Be and Ru, BS
or BC for Hf, Sc, Y, and Zr, and is non-basal dumbbell for Co,
Mg, Re, and Ti. Igarashi et al [45] reported that the pyramidal
plane crowdion is most stable for Co, Mg, Hf, Ti, and Zr.
Bacon [37] reported that the basal octahedral site is most stable
with pair potential calculations for Co, Ti, and Zr. These
calculation results somewhat contrast with the present work.
As stable states derived by different potentials are different, it
is inconvenient to list the calculated formation energies derived
by others in the same table. Comparing the formation energies
calculated in this work and in other works, the calculated
results in the present work are in general agreement with the
results in other works [5, 11, 44, 46–50] in magnitude, although
the predicted results are much smaller than those obtained by
Igarashi et al [45].

5. Surface and stacking fault energy

The developed potential is applied to calculate the surface
energy of low index faces, the basal plane (0001), and the prism
plane (01̄10) through MD simulations. The calculated models
consist of 10 × 12 × 12 = 1440 unit cells (2880 atoms) for the
surface energies in the basal plane and 20×12×12 = 1440 unit
cells (2880 atoms) for those in the prism plane. The difference
in the surface energy between relaxed and unrelaxed values
for the basal plane or the prism plane is small, no more than
5 mJ m−2. The calculated surface energies are presented in
table 9. The calculated surface energy of the basal plane for
each metal is a bit lower than that of the prism plane, as the
surface atom density of the basal plane is higher than that of
the prism plane for the six hcp metals with the c/a ratio below
the ideal value. The surface energies derived by the constructed
potential are lower than the experimental data and the results

7
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Figure 3. The schematic representations of the self-interstitial configurations in the hcp structure. The black balls represent self-interstitial
atoms.

Table 9. Stacking fault energies (mJ m−2) obtained by the LREP, experimental observations [51], and other works.

Co Hf Mg Re Ti Zr

I1 44 68 25 70 68 56
18 [11] 22 [11] 12 [11] 44 [11] 71 [11] 40 [11]

33 [35] 41 [44]

I2 66 101 38 104 101 84
30 [9] 198 [9] 14 [9] 150 [9] 144 [9] 62 [9]
37 [11] 45 [11] 8 [11] 31 [11] 47 [11] 26 [11]

64 [35] 80 [44]
64 [45] 111 [45] 10 [45] 116 [45] 27 [45]
42 [51] 390 [51] 30 [51] 540 [51] 290 [51] 340 [51]

E 131 200 76 206 200 166
55 [11] 67 [11] 12 [11] 44 [11] 71 [11] 40 [11]

94 [35] 118 [44]

of MEAM [9], and higher than the results of AMEAM [11]. It
can be seen that the calculated surface energy of Co matches
well with the experimental value, and other calculation results
are comparable to those data obtained from experiment or other
theoretical works.

The energies of a few stacking faults, such as two
intrinsic faults I1 (ABABCBCB stacking sequence) and I2
(ABABCACA stacking sequence) and the extrinsic fault E
(ABABCABAB stacking sequence), were calculated based
on the constructed potential as well. These calculations
were carried out by MD simulations with models containing
some 2880 atoms. The calculated stacking fault energies are
presented in table 10. As fault I2 can be formed from the
perfect crystal by a simple shear, most calculation results are
reported concerning this stacking. Considering that stacking
fault energies are not at all well known, it can be seen that
reasonable stacking fault energies of I2 are predicted by the
constructed potential for the six metals. In table 10, it can
be seen that the fault energy for I1 is about half of that of I2

and that of fault E is about 1.5 times that of I2 in the present
calculations, which has been pointed out by Baskes et al [9]
for MEAM and pair potentials. From the results, it can be seen
that the developed potential can reasonably reflect the behavior
of stacking faults in hcp metals.

As one can see, the proposed potential can correctly
predict the order of structural stability and distinguish the
energy differences between their stable structure and other
structures. It can also well predict the behaviors of vacancies,
self-interstitial atoms, and some other defects in hcp metals.
However, since it is based on a semi-empirical method, there
are still some properties that cannot be well derived from the
proposed potential. For example, the melting points and linear
thermal expansion coefficients (300 K) are calculated through
MD simulations and shown in figure 4. The corresponding
experimental values [22, 53] are also presented for comparison
in the figure. One notes that the calculated melting points
are somehow lower than the experimental values and the
calculated expansion coefficients for most elements are much

8
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Figure 4. The melting points (a) and linear thermal expansion coefficients (b) of Co, Hf, Mg, Re, Ti, and Zr derived from the proposed n-body
potential through MD simulation.

Table 10. Surface energy (mJ m−2) obtained by the LREP, experimental observations [52], and other works.

Co Hf Mg Re Ti Zr

Basal plane 1893 1463 437 2625 1442 1097
3056 [9] 2041 [9] 900 [9] 3940 [9] 1962 [9] 1001 [9]
1162 [11] 992 [11] 310 [11] 1682 [11] 1033 [11] 623 [11]

Prism plane 1943 1534 451 2695 1498 1156
3459 [9] 1636 [9] 1016 [9] 3949 [9] 1673 [9] 2364 [9]
1172 [11] 988 [11] 316 [11] 1689 [11] 1023 [11] 978 [11]
2160 [52] 2190 [52] 785 [52] 3630 [52] 1920 [52] 2050 [52]

higher than the experimental data. Although the developed
potential cannot reproduce these thermal properties, the
developed potential can well predict the properties related to
the energy and phase stability of hcp metals.

6. Concluding remarks

A spherically symmetric potential has been developed and
satisfactorily applied to six hcp metals, Co, Hf, Mg, Re,
Ti, and Zr. The developed potential can well reproduce
the lattice constants, c/a ratios, cohesive energies, and bulk
moduli for the stable hcp structure and metastable bcc and
fcc structures. Meanwhile, the energy differences between the
real hcp structure and ideal hcp, fcc, bcc, sc, and diamond
structures are calculated. These calculations show that the
developed potential can correctly predict the order of structural
stability and reasonably distinguish the energy differences
between their stable hcp structure and other structures.

Based on the developed potential, the properties of the
defects in the hcp metals are studied as well. The calculated
vacancy formation energies, the activation energies of self-
diffusion by vacancies and the divacancy formation energies
are in good agreement with the values in experiments and
in other works. Although the stable configurations of self-
interstitial atoms predicted in this work somewhat contrast with
those predicted by other methods, the calculated formation
energies generally agree with the values in other works. The
calculated surface energies and stacking fault energies are
also consistent with the experimental results or theoretical
predictions.

As the developed potential is spherically symmetric,
it may be applied in general calculations or large-scale
simulations including their ordered and disordered states.
Meanwhile, since the potential is in an analytic form which has
been well applied to bcc and fcc metals, it is more convenient
to construct empirical potentials for a metal system which
consists of cubic and hcp metals.
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